Augmenting Online Algorithms with ε-Accurate Predictions

Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, Kevin Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution


A growing body of work in learning-augmented online algorithms studies how online algorithms can be improved when given access to ML predictions about the future. Motivated by ML models that give a confidence parameter for their predictions, we study online algorithms with predictions that are ε-accurate: namely, each prediction is correct with probability (at least) ε, but can be arbitrarily inaccurate with the remaining probability. We show that even with predictions that are accurate with a small probability and arbitrarily inaccurate otherwise, we can dramatically outperform worst-case bounds for a range of classical online problems including caching, online set cover, and online facility location. Our main results are an O(log(1/ε))-competitive algorithm for caching, and a simple O(1/ε)-competitive algorithm for a large family of covering problems, including set cover, network design, and facility location, with ε-accurate predictions.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258


Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Augmenting Online Algorithms with ε-Accurate Predictions'. Together they form a unique fingerprint.

Cite this