Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method

Mingyuan Xu, Tong Zhu, John Z.H. Zhang

Research output: Contribution to journalReview articlepeer-review

Abstract

In recent years, the use of deep learning (neural network) potential energy surface (NNPES) in molecular dynamics simulation has experienced explosive growth as it can be as accurate as quantum chemistry methods while being as efficient as classical mechanic methods. However, the development of NNPES is highly nontrivial. In particular, it has been troubling to construct a dataset that is as small as possible yet can cover the target chemical space. In this work, an ESOINN-DP method is developed, which has the enhanced self-organizing incremental neural network (ESOINN) and a newly proposed error indicator at its core. With ESOINN-DP, one can construct the NNPES with little human intervention, and this method ensures that the constructed reference dataset covers the target chemical space with minimum redundancy. The performance of the ESOINN-DP method has been well validated by developing neural network potential energy surfaces for water clusters, tripeptides, and by de-redundancy of a sub-dataset of the ANI-1 database. We believe that the ESOINN-DP method provides a novel idea for the construction of NNPES and, especially, the reference datasets, and it can be used for molecular dynamics (MD) simulations of various gas-phase and condensed-phase chemical systems.

Original languageEnglish (US)
Pages (from-to)5425-5437
Number of pages13
JournalJournal of Chemical Information and Modeling
Volume61
Issue number11
DOIs
StatePublished - Nov 22 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method'. Together they form a unique fingerprint.

Cite this