Automated Few-shot Classification with Instruction-Finetuned Language Models

Rami Aly, Xingjian Shi, Kaixiang Lin, Aston Zhang, Andrew Gordon Wilson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A particularly successful class of approaches for few-shot learning combines language models with prompts - hand-crafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction finetuned language models are remarkably robust towards some dimensions of a prompt's design. We subsequently propose a simple method to eliminate the need for handcrafted prompts, named AuT-Few. This approach consists of (i) a prompt retrieval module that selects suitable task instructions from the instruction-tuning knowledge base, and (ii) the generation of two distinct, semantically meaningful, class descriptions and a selection mechanism via cross-validation. Over 12 datasets, spanning 8 classification tasks, we show that AuT-Few outperforms current state-of-the-art few-shot learning methods. Moreover, AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark. Notably, these results are achieved without task-specific handcrafted prompts on unseen tasks.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages2414-2432
Number of pages19
ISBN (Electronic)9798891760615
StatePublished - 2023
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period12/6/2312/10/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Automated Few-shot Classification with Instruction-Finetuned Language Models'. Together they form a unique fingerprint.

Cite this