Abstract
Variational inference is a scalable technique for approximate Bayesian inference. Deriving variational inference algorithms requires tedious model-specific calculations; this makes it difficult for non-experts to use. We propose an automatic variational inference algorithm, automatic differentiation variational inference (ADVI); we implement it in Stan (code available), a probabilistic programming system. In ADVI the user provides a Bayesian model and a dataset, nothing else. We make no conjugacy assumptions and support a broad class of models. The algorithm automatically determines an appropriate variational family and optimizes the variational objective. We compare ADVI to MCMC sampling across hierarchical generalized linear models, nonconjugate matrix factorization, and a mixture model. We train the mixture model on a quarter million images. With ADVI we can use variational inference on any model we write in Stan.
Original language | English (US) |
---|---|
Pages (from-to) | 568-576 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2015-January |
State | Published - 2015 |
Event | 29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada Duration: Dec 7 2015 → Dec 12 2015 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing