@inproceedings{3b6405b1aa6c43ac8567a16ff9f010ba,
title = "Automatically detecting pointing performance",
abstract = "Since not all persons interact with computer systems in the same way, computer systems should not interact with all individuals in the same way. This paper presents a significant step in automatically detecting characteristics of persons with a wide range of abilities based on observing their user input events. Three datasets are used to build learned statistical models on pointing data collected in a laboratory setting from individuals with varying ability to use computer pointing devices. The first dataset is used to distinguish between pointing behaviors from individuals with pointing problems vs. individuals without with 92.7% accuracy. The second is used to distinguish between pointing data from Young Adults and Adults vs. Older Adults vs. individuals with Parkinson's Disease with 91.6% accuracy. The final data set is used to predict the need for a specific adaptation based on a user's performance with 94.4% accuracy. These results suggest that it may be feasible to use such models to automatically identify computer users who would benefit from accessibility tools, and to even make specific tool recommendations.",
keywords = "Accessibility, Activity recognition, Interaction techniques, Learned statistical models, Motor impairments",
author = "Amy Hurst and Hudson, {Scott E.} and Jennifer Mankoff and Shari Trewin",
year = "2008",
doi = "10.1145/1378773.1378776",
language = "English (US)",
isbn = "9781595939876",
series = "International Conference on Intelligent User Interfaces, Proceedings IUI",
pages = "11--19",
booktitle = "Proceedings of the 13th International Conference on Intelligent User Interfaces 2008, IUI'08",
note = "13th International Conference on Intelligent User Interfaces 2008, IUI'08 ; Conference date: 13-01-2008 Through 16-01-2008",
}