@inproceedings{4e2e474b73e74d8a9a08116785d5c881,
title = "AutoViDev: A Computer-Vision Framework to Enhance and Accelerate Research in Human Development",
abstract = "Interdisciplinary exchange of ideas and tools can accelerate scientific progress. For example, findings from developmental and vision science have spurred recent advances in artificial intelligence and computer vision. However, relatively little attention has been paid to how artificial intelligence and computer vision can facilitate research in developmental science. The current study presents AutoViDev—an automatic video-analysis tool that uses machine learning and computer vision to support video-based developmental research. AutoViDev identifies full body position estimations in real-time video streams using convolutional pose machine-learning algorithms. AutoViDev provides valuable information about a variety of behaviors, including gaze direction, facial expressions, posture, locomotion, manual actions, and interactions with objects. We present a high-level architecture of the framework and describe two projects that demonstrate its usability. We discuss the benefits of applying AutoViDev to large-scale, shared video datasets and highlight how machine learning and computer vision can enhance and accelerate research in developmental science.",
keywords = "Behavioral science, Body recognition, Computer vision, Convolutional pose machines, Human development",
author = "Ori Ossmy and Gilmore, {Rick O.} and Adolph, {Karen E.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; Computer Vision Conference, CVC 2019 ; Conference date: 25-04-2019 Through 26-04-2019",
year = "2020",
doi = "10.1007/978-3-030-17798-0_14",
language = "English (US)",
isbn = "9783030177973",
series = "Advances in Intelligent Systems and Computing",
publisher = "Springer Verlag",
pages = "147--156",
editor = "Supriya Kapoor and Kohei Arai",
booktitle = "Advances in Computer Vision - Proceedings of the 2019 Computer Vision Conference CVC",
}