TY - GEN
T1 - AVF-driven parity optimization for MBU protection of in-core memory arrays
AU - Maniatakos, Michail
AU - Michael, Maria K.
AU - Makris, Yiorgos
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - We propose an AVF-driven parity selection method for protecting modern microprocessor in-core memory arrays against MBUs. As MBUs constitute more than 50% of the upsets in latest technologies, error correcting codes or physical interleaving are typically employed to effectively protect out-of-core memory structures, such as caches. However, such methods are not applicable to high-performance in-core arrays, due to computational complexity, high delay and area overhead. To this end, we revisit parity as an effective mechanism to detect errors and we resort to pipeline flushing and checkpointing for correction. We demonstrate that optimal parity tree construction for MBU detection is a computationally complex problem, which we then formulate as an integer-linear-program (ILP). Experimental results on Alpha 21264 and Intel P6 in-core memory arrays demonstrate that optimal parity tree selection can achieve great vulnerability reduction, even when a small number of bits are added to the parity trees, compared to simple heuristics. Furthermore, the ILP formulation allows us to find better solutions by effectively exploring the solution space in the presence of multiple parity trees; results show that the presence of 2 parity trees offers a vulnerability reduction of more than 50% over a single parity tree.
AB - We propose an AVF-driven parity selection method for protecting modern microprocessor in-core memory arrays against MBUs. As MBUs constitute more than 50% of the upsets in latest technologies, error correcting codes or physical interleaving are typically employed to effectively protect out-of-core memory structures, such as caches. However, such methods are not applicable to high-performance in-core arrays, due to computational complexity, high delay and area overhead. To this end, we revisit parity as an effective mechanism to detect errors and we resort to pipeline flushing and checkpointing for correction. We demonstrate that optimal parity tree construction for MBU detection is a computationally complex problem, which we then formulate as an integer-linear-program (ILP). Experimental results on Alpha 21264 and Intel P6 in-core memory arrays demonstrate that optimal parity tree selection can achieve great vulnerability reduction, even when a small number of bits are added to the parity trees, compared to simple heuristics. Furthermore, the ILP formulation allows us to find better solutions by effectively exploring the solution space in the presence of multiple parity trees; results show that the presence of 2 parity trees offers a vulnerability reduction of more than 50% over a single parity tree.
UR - http://www.scopus.com/inward/record.url?scp=84885196634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885196634&partnerID=8YFLogxK
U2 - 10.7873/date.2013.301
DO - 10.7873/date.2013.301
M3 - Conference contribution
AN - SCOPUS:84885196634
SN - 9783981537000
T3 - Proceedings -Design, Automation and Test in Europe, DATE
SP - 1480
EP - 1485
BT - Proceedings - Design, Automation and Test in Europe, DATE 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th Design, Automation and Test in Europe Conference and Exhibition, DATE 2013
Y2 - 18 March 2013 through 22 March 2013
ER -