Balancing limited resources in actin network competition

Christophe Guérin, Anne Betty N'Diaye, Laurène Gressin, Alex Mogilner, Manuel Théry, Laurent Blanchoin, Alexandra Colin

Research output: Contribution to journalArticlepeer-review

Abstract

In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.

Original languageEnglish (US)
Pages (from-to)500-513.e5
JournalCurrent Biology
Volume35
Issue number3
DOIs
StatePublished - Feb 3 2025

Keywords

  • actin
  • actin-based motility
  • competition strength
  • competitive networks
  • micropatterns
  • microwells
  • protein turnover
  • reconstituted systems

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Balancing limited resources in actin network competition'. Together they form a unique fingerprint.

Cite this