TY - JOUR
T1 - Base sequence-dependent bends in site-specific benzo[a]pyrene diol epoxide-modified oligonucleotide duplexes
AU - Liu, Tongming
AU - Xu, Jing
AU - Tsao, Hong
AU - Li, Bin
AU - Xu, Rong
AU - Yang, Cuijian
AU - Amin, Shantu
AU - Moriya, Masaaki
AU - Geacintov, Nicholas E.
PY - 1996/1
Y1 - 1996/1
N2 - The site specifically modified oligonucleotides 5'-d(TCCTCCTG1G2CCTCTC) (I) and 5'-d(CTATG1G2G3TATC) (II) were synthesized with single modified guanine residues at positions G1, G2, or G3, derived from the covalent binding reaction of 7R,8S-dihydroxy-9S, 10R-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene ((+)-anti-BPDE) with the exocyclic amino groups of the guanine residues. In denaturing 20% polyacrylamide gels, the electrophoretic mobilities of the (+)-anti-BPDE-modified oligonucleotides I and II are slower than the mobilities of the respective unmodified oligonucleotides and independent of the positions of the BPDE-modified guanines. However, in the double-stranded forms in native 8% polyacrylamide gels, the electrophoretic mobilities of the duplexes with lesions at G2 or G3 are remarkably slower (reductions in mobilities up to ~40%) than to duplexes with lesions at G1 and are attributed to physical bends or flexible hinge joints at the sites of the BPDE lesions. These sequence-dependent mobility effects occur whenever the BPDE-modified guanine residues with (+)- trans-stereochemistry are flanked by unmodified G's on the 5'-side. These retarded electrophoretic mobilities are attributed to bending induced by steric hindrance effects involving the bulky 5'-flanking guanines and the pyrenyl residues that are known to point into the 5'-direction relative to the modified G [Cosman, M., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 19141918]. These anomalous electrophoretic mobility effects are not observed in the case of (-)-anti-BPDE-modified sequences I with trans-(-)-anti-BPDE- N2-dG adduct stereochemistry.
AB - The site specifically modified oligonucleotides 5'-d(TCCTCCTG1G2CCTCTC) (I) and 5'-d(CTATG1G2G3TATC) (II) were synthesized with single modified guanine residues at positions G1, G2, or G3, derived from the covalent binding reaction of 7R,8S-dihydroxy-9S, 10R-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene ((+)-anti-BPDE) with the exocyclic amino groups of the guanine residues. In denaturing 20% polyacrylamide gels, the electrophoretic mobilities of the (+)-anti-BPDE-modified oligonucleotides I and II are slower than the mobilities of the respective unmodified oligonucleotides and independent of the positions of the BPDE-modified guanines. However, in the double-stranded forms in native 8% polyacrylamide gels, the electrophoretic mobilities of the duplexes with lesions at G2 or G3 are remarkably slower (reductions in mobilities up to ~40%) than to duplexes with lesions at G1 and are attributed to physical bends or flexible hinge joints at the sites of the BPDE lesions. These sequence-dependent mobility effects occur whenever the BPDE-modified guanine residues with (+)- trans-stereochemistry are flanked by unmodified G's on the 5'-side. These retarded electrophoretic mobilities are attributed to bending induced by steric hindrance effects involving the bulky 5'-flanking guanines and the pyrenyl residues that are known to point into the 5'-direction relative to the modified G [Cosman, M., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 19141918]. These anomalous electrophoretic mobility effects are not observed in the case of (-)-anti-BPDE-modified sequences I with trans-(-)-anti-BPDE- N2-dG adduct stereochemistry.
UR - http://www.scopus.com/inward/record.url?scp=0030031220&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030031220&partnerID=8YFLogxK
U2 - 10.1021/tx9501086
DO - 10.1021/tx9501086
M3 - Article
C2 - 8924600
AN - SCOPUS:0030031220
SN - 0893-228X
VL - 9
SP - 255
EP - 261
JO - Chemical research in toxicology
JF - Chemical research in toxicology
IS - 1
ER -