TY - JOUR
T1 - Bayesian deep learning and a probabilistic perspective of generalization
AU - Wilson, Andrew Gordon
AU - Izmailov, Pavel
N1 - Funding Information:
This research is supported by an Amazon Research Award, Facebook Research, Amazon Machine Learning Research Award, NSF I-DISRE 193471, NIH R01 DA048764-01A1, NSF IIS-1910266, and NSF 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for Data Science.
Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - The key distinguishing property of a Bayesian approach is marginalization, rather than using a single setting of weights. Bayesian marginalization can particularly improve the accuracy and calibration of modern deep neural networks, which are typically underspecified by the data, and can represent many compelling but different solutions. We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization, and propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction, without significant overhead. We also investigate the prior over functions implied by a vague distribution over neural network weights, explaining the generalization properties of such models from a probabilistic perspective. From this perspective, we explain results that have been presented as mysterious and distinct to neural network generalization, such as the ability to fit images with random labels, and show that these results can be reproduced with Gaussian processes. We also show that Bayesian model averaging alleviates double descent, resulting in monotonic performance improvements with increased flexibility.
AB - The key distinguishing property of a Bayesian approach is marginalization, rather than using a single setting of weights. Bayesian marginalization can particularly improve the accuracy and calibration of modern deep neural networks, which are typically underspecified by the data, and can represent many compelling but different solutions. We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization, and propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction, without significant overhead. We also investigate the prior over functions implied by a vague distribution over neural network weights, explaining the generalization properties of such models from a probabilistic perspective. From this perspective, we explain results that have been presented as mysterious and distinct to neural network generalization, such as the ability to fit images with random labels, and show that these results can be reproduced with Gaussian processes. We also show that Bayesian model averaging alleviates double descent, resulting in monotonic performance improvements with increased flexibility.
UR - http://www.scopus.com/inward/record.url?scp=85108448847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108448847&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85108448847
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -