Bayesian Optimization with Conformal Prediction Sets

Samuel Stanton, Wesley Maddox, Andrew Gordon Wilson

Research output: Contribution to journalConference articlepeer-review

Abstract

Bayesian optimization is a coherent, ubiquitous approach to decision-making under uncertainty, with applications including multi-arm bandits, active learning, and black-box optimization. Bayesian optimization selects decisions (i.e. objective function queries) with maximal expected utility with respect to the posterior distribution of a Bayesian model, which quantifies reducible, epistemic uncertainty about query outcomes. In practice, subjectively implausible outcomes can occur regularly for two reasons: 1) model misspecification and 2) covariate shift. Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models and a simple mechanism to correct for covariate shift. We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity, and investigate its behavior on a suite of black-box optimization tasks and tabular ranking tasks. In many cases we find that query coverage can be significantly improved without harming sample-efficiency.

Original languageEnglish (US)
Pages (from-to)959-986
Number of pages28
JournalProceedings of Machine Learning Research
Volume206
StatePublished - 2023
Event26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain
Duration: Apr 25 2023Apr 27 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Bayesian Optimization with Conformal Prediction Sets'. Together they form a unique fingerprint.

Cite this