Benefiting from bicubically down-sampled images for learning real-world image super-resolution

Mohammad Saeed Rad, Thomas Yu, Claudiu Musat, Hazim Kemal Ekenel, Behzad Bozorgtabar, Jean Philippe Thiran

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Super-resolution (SR) has traditionally been based on pairs of high-resolution images (HR) and their low-resolution (LR) counterparts obtained artificially with bicubic downsampling. However, in real-world SR, there is a large variety of realistic image degradations and analytically modeling these realistic degradations can prove quite difficult. In this work, we propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps. First, we train a network to transform real LR images to the space of bicubically down-sampled images in a supervised manner, by using both real LR/HR pairs and synthetic pairs. Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image. The first step of the pipeline addresses the problem by registering the large variety of degraded images to a common, well understood space of images. The second step then leverages the already impressive performance of SR on bicubically downsampled images, sidestepping the issues of end-to-end training on datasets with many different image degradations. We demonstrate the effectiveness of our proposed method by comparing it to recent methods in real-world SR and show that our proposed approach outperforms the state-of-the-art works in terms of both qualitative and quantitative results, as well as results of an extensive user study conducted on several real image datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1589-1598
Number of pages10
ISBN (Electronic)9780738142661
DOIs
StatePublished - Jan 2021
Event2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 - Virtual, Online, United States
Duration: Jan 5 2021Jan 9 2021

Publication series

NameProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021

Conference

Conference2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
Country/TerritoryUnited States
CityVirtual, Online
Period1/5/211/9/21

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Benefiting from bicubically down-sampled images for learning real-world image super-resolution'. Together they form a unique fingerprint.

Cite this