Beol scaling limits and next generation technology prospects

Azad Naeemi, Chenyun Pan, Ahmet Ceyhan, Rouhollah M. Iraei, Vachan Kumar, Shaloo Rakheja

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents the major limitations to the interconnect technology scaling at future technology generations and demonstrates both evolutionary and radical potential solutions to the BEOL scaling problem. To address the local interconnect challenges, a novel hybrid Al-Cu interconnect technology is introduced. Performances of carbon-based interconnects are evaluated as a more radical solution. The impact of interconnects and the optimal interconnect options are investigated for emerging next generation devices. Interconnects for new state variables, namely spintronic interconnects, are studied and their potential performances in an all-spin logic system are evaluated.

Original languageEnglish (US)
Title of host publicationDAC 2014 - 51st Design Automation Conference, Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781479930173
DOIs
StatePublished - 2014
Event51st Annual Design Automation Conference, DAC 2014 - San Francisco, CA, United States
Duration: Jun 2 2014Jun 5 2014

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Other

Other51st Annual Design Automation Conference, DAC 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/2/146/5/14

Keywords

  • All-spin logic
  • Carbon-based interconnects
  • Emerging FETS
  • Hybrid Al-Cu interconnects
  • New state variables
  • Spintronic interconnects

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Beol scaling limits and next generation technology prospects'. Together they form a unique fingerprint.

Cite this