Bernstein processes and spin-1/2 particles

Boualem Djehiche

Research output: Contribution to journalArticlepeer-review

Abstract

A pure jump Bernstein process whose probability density is the product of the solution of the (imaginary time) Schrödinger equation and its adjoint equation, associated to a class of time dependent Hamiltonians describing spin-1/2 particles, is constructed. A path integral representation of these solutions, in terms of this process, is obtained as well as a calculus over path space for the associated Euclidean quantum observables.

Original languageEnglish (US)
Pages (from-to)3050-3059
Number of pages10
JournalJournal of Mathematical Physics
Volume33
Issue number9
DOIs
StatePublished - 1992

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Bernstein processes and spin-1/2 particles'. Together they form a unique fingerprint.

Cite this