Beyond frontal faces: Improving Person Recognition using multiple cues

Ning Zhang, Manohar Paluri, Yaniv Taigman, Rob Fergus, Lubomir Bourdev

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We explore the task of recognizing peoples' identities in photo albums in an unconstrained setting. To facilitate this, we introduce the new People In Photo Albums (PIPA) dataset, consisting of over 60000 instances of ∼2000 individuals collected from public Flickr photo albums. With only about half of the person images containing a frontal face, the recognition task is very challenging due to the large variations in pose, clothing, camera viewpoint, image resolution and illumination. We propose the Pose Invariant PErson Recognition (PIPER) method, which accumulates the cues of poselet-level person recognizers trained by deep convolutional networks to discount for the pose variations, combined with a face recognizer and a global recognizer. Experiments on three different settings confirm that in our unconstrained setup PIPER significantly improves on the performance of DeepFace, which is one of the best face recognizers as measured on the LFW dataset.

Original languageEnglish (US)
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Pages4804-4813
Number of pages10
ISBN (Electronic)9781467369640
DOIs
StatePublished - Oct 14 2015
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: Jun 7 2015Jun 12 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume07-12-June-2015
ISSN (Print)1063-6919

Other

OtherIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
CountryUnited States
CityBoston
Period6/7/156/12/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Beyond frontal faces: Improving Person Recognition using multiple cues'. Together they form a unique fingerprint.

Cite this