Beyond Point Prediction: Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process

Zichong Li, Qunzhi Xu, Zhenghao Xu, Yajun Mei, Tuo Zhao, Hongyuan Zha

Research output: Contribution to journalConference articlepeer-review

Abstract

Spatio-temporal point processes (STPPs) are potent mathematical tools for modeling and predicting events with both temporal and spatial features. Despite their versatility, most existing methods for learning STPPs either assume a restricted form of the spatio-temporal distribution, or suffer from inaccurate approximations of the intractable integral in the likelihood training objective. These issues typically arise from the normalization term of the probability density function. Moreover, existing works only provide point prediction for events without quantifying their uncertainty, such as confidence intervals for the event's arrival time and confidence regions for the event's location, which is crucial given the considerable randomness of the data. To tackle these challenges, we introduce SMASH: a Score MAtching-based pSeudolikeliHood estimator for learning marked STPPs. Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of marked STPPs through score-matching and predicts confidence intervals/regions for event time and location by generating samples through a score-based sampling algorithm. The superior performance of our proposed framework is demonstrated through extensive experiments on both point and confidence interval/region prediction of events.

Original languageEnglish (US)
Pages (from-to)29096-29111
Number of pages16
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Beyond Point Prediction: Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process'. Together they form a unique fingerprint.

Cite this