Biological response on a titanium implant-grade surface functionalized with modular peptides

H. Yazici, H. Fong, B. Wilson, E. E. Oren, F. A. Amos, H. Zhang, J. S. Evans, M. L. Snead, M. Sarikaya, C. Tamerler

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-Assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials.

    Original languageEnglish (US)
    Pages (from-to)5341-5352
    Number of pages12
    JournalActa Biomaterialia
    Volume9
    Issue number2
    DOIs
    StatePublished - Feb 2013

    Keywords

    • Bioenabled surface modification
    • Biomaterial interface
    • Implants
    • Molecular recognition
    • Titanium binding peptide

    ASJC Scopus subject areas

    • Biotechnology
    • Biomaterials
    • Biochemistry
    • Biomedical Engineering
    • Molecular Biology

    Fingerprint

    Dive into the research topics of 'Biological response on a titanium implant-grade surface functionalized with modular peptides'. Together they form a unique fingerprint.

    Cite this