Biomimetic crystalline actuators: Structure-kinematic aspects of the self-actuation and motility of thermosalient crystals

Subash Chandra Sahoo, Manas K. Panda, Naba K. Nath, Panče Naumov

Research output: Contribution to journalArticlepeer-review

Abstract

While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family.

Original languageEnglish (US)
Pages (from-to)12241-12251
Number of pages11
JournalJournal of the American Chemical Society
Volume135
Issue number33
DOIs
StatePublished - Aug 21 2013

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Biomimetic crystalline actuators: Structure-kinematic aspects of the self-actuation and motility of thermosalient crystals'. Together they form a unique fingerprint.

Cite this