Birdvis: Visualizing and understanding bird populations

Nivan Ferreira, Lauro Lins, Daniel Fink, Steve Kelling, Chris Wood, Juliana Freire, Cláudio Silva

Research output: Contribution to journalArticlepeer-review

Abstract

Birds are unrivaled windows into biotic processes at all levels and are proven indicators of ecological well-being. Understanding the determinants of species distributions and their dynamics is an important aspect of ecology and is critical for conservation and management. Through crowdsourcing, since 2002, the eBird project has been collecting bird observation records. These observations, together with local-scale environmental covariates such as climate, habitat, and vegetation phenology have been a valuable resource for a global community of educators, land managers, ornithologists, and conservation biologists. By associating environmental inputs with observed patterns of bird occurrence, predictive models have been developed that provide a statistical framework to harness available data for predicting species distributions and making inferences about species-habitat associations. Understanding these models, however, is challenging because they require scientists to quantify and compare multiscale spatialtemporal patterns. A large series of coordinated or sequential plots must be generated, individually programmed, and manually composed for analysis. This hampers the exploration and is a barrier to making the cross-species comparisons that are essential for coordinating conservation and extracting important ecological information. To address these limitations, as part of a collaboration among computer scientists, statisticians, biologists and ornithologists, we have developed BirdVis, an interactive visualization system that supports the analysis of spatio-temporal bird distribution models. BirdVis leverages visualization techniques and uses them in a novel way to better assist users in the exploration of interdependencies among model parameters. Furthermore, the system allows for comparative visualization through coordinated views, providing an intuitive interface to identify relevant correlations and patterns. We justify our design decisions and present case studies that show how BirdVis has helped scientists obtain new evidence for existing hypotheses, as well as formulate new hypotheses in their domain.

Original languageEnglish (US)
Article number6065004
Pages (from-to)2374-2383
Number of pages10
JournalIEEE Transactions on Visualization and Computer Graphics
Volume17
Issue number12
DOIs
StatePublished - 2011

Keywords

  • Ornithology
  • multiscale analysis
  • spatial data
  • species distribution models
  • temporal data

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Birdvis: Visualizing and understanding bird populations'. Together they form a unique fingerprint.

Cite this