TY - JOUR
T1 - Bistability in the rotational motion of rigid and flexible flyers
AU - Huang, Yangyang
AU - Ristroph, Leif
AU - Luhar, Mitul
AU - Kanso, Eva
N1 - Publisher Copyright:
© 2018 Cambridge University Press.
PY - 2018/8/25
Y1 - 2018/8/25
N2 - We explore the rotational stability of hovering flight in an idealized two-dimensional model. Our model is motivated by an experimental pyramid-shaped object (Weathers et al., J. Fluid Mech, vol. 650, 2010, pp. 415-425; Liu et al., Phys. Rev. Lett., vol. 108, 2012, 068103) and a computational -shaped analogue (Huang et al., Phys. Fluids, vol. 27 (6), 2015, 061706; Huang et al., J. Fluid Mech., vol. 804, 2016, pp. 531-549) hovering passively in oscillating airflows; both systems have been shown to maintain rotational balance during free flight. Here, we attach the -shaped flyer at its apex in oscillating flow, allowing it to rotate freely akin to a pendulum. We use computational vortex sheet methods and we develop a quasi-steady point-force model to analyse the rotational dynamics of the flyer. We find that the flyer exhibits stable concave-down and concave-up behaviour. Importantly, the down and up configurations are bistable and co-exist for a range of background flow properties. We explain the aerodynamic origin of this bistability and compare it to the inertia-induced stability of an inverted pendulum oscillating at its base. We then allow the flyer to flap passively by introducing a rotational spring at its apex. For stiff springs, flexibility diminishes upward stability but as stiffness decreases, a new transition to upward stability is induced by flapping. We conclude by commenting on the implications of these findings for biological and man-made aircraft.
AB - We explore the rotational stability of hovering flight in an idealized two-dimensional model. Our model is motivated by an experimental pyramid-shaped object (Weathers et al., J. Fluid Mech, vol. 650, 2010, pp. 415-425; Liu et al., Phys. Rev. Lett., vol. 108, 2012, 068103) and a computational -shaped analogue (Huang et al., Phys. Fluids, vol. 27 (6), 2015, 061706; Huang et al., J. Fluid Mech., vol. 804, 2016, pp. 531-549) hovering passively in oscillating airflows; both systems have been shown to maintain rotational balance during free flight. Here, we attach the -shaped flyer at its apex in oscillating flow, allowing it to rotate freely akin to a pendulum. We use computational vortex sheet methods and we develop a quasi-steady point-force model to analyse the rotational dynamics of the flyer. We find that the flyer exhibits stable concave-down and concave-up behaviour. Importantly, the down and up configurations are bistable and co-exist for a range of background flow properties. We explain the aerodynamic origin of this bistability and compare it to the inertia-induced stability of an inverted pendulum oscillating at its base. We then allow the flyer to flap passively by introducing a rotational spring at its apex. For stiff springs, flexibility diminishes upward stability but as stiffness decreases, a new transition to upward stability is induced by flapping. We conclude by commenting on the implications of these findings for biological and man-made aircraft.
KW - aerodynamics
KW - flow-structure interactions
KW - swimming/flying
UR - http://www.scopus.com/inward/record.url?scp=85049342997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049342997&partnerID=8YFLogxK
U2 - 10.1017/jfm.2018.446
DO - 10.1017/jfm.2018.446
M3 - Article
AN - SCOPUS:85049342997
SN - 0022-1120
VL - 849
SP - 1043
EP - 1067
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -