BiTr-Unet: A CNN-Transformer Combined Network for MRI Brain Tumor Segmentation

Qiran Jia, Hai Shu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdorff distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.

Original languageEnglish (US)
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3-14
Number of pages12
ISBN (Print)9783031090011
DOIs
StatePublished - 2022
Event7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: Sep 27 2021Sep 27 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12963 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period9/27/219/27/21

Keywords

  • Brain tumor
  • Deep learning
  • Multi-modal image segmentation
  • Vision transformer

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'BiTr-Unet: A CNN-Transformer Combined Network for MRI Brain Tumor Segmentation'. Together they form a unique fingerprint.

Cite this