TY - JOUR
T1 - Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally-Printed Bioceramic Scaffolds
T2 - Construct Optimization and Effects on Cranial Suture Patency
AU - Maliha, Samantha G.
AU - Lopez, Christopher D.
AU - Coelho, Paulo G.
AU - Witek, Lukasz
AU - Cox, Madison
AU - Meskin, Alan
AU - Rusi, Sejndi
AU - Torroni, Andrea
AU - Cronstein, Bruce N.
AU - Flores, Roberto L.
N1 - Publisher Copyright:
© 2020 Lippincott Williams and Wilkins. All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - BACKGROUND: Three-dimensionally-printed bioceramic scaffolds composed of β-tricalcium phosphate delivering the osteogenic agent dipyridamole can heal critically sized calvarial defects in skeletally mature translational models. However, this construct has yet to be applied to growing craniofacial models. In this study, the authors implanted three-dimensionally-printed bioceramic/dipyridamole scaffolds in a growing calvaria animal model and evaluated bone growth as a function of geometric scaffold design and dipyridamole concentration. Potential adverse effects on the growing suture were also evaluated. METHODS: Bilateral calvarial defects (10 mm) were created in 5-week-old (approximately 1.1 kg) New Zealand White rabbits (n = 16 analyzed). Three-dimensionally-printed bioceramic scaffolds were constructed in quadrant form composed of varying pore dimensions (220, 330, and 500 μm). Each scaffold was coated with collagen and soaked in varying concentrations of dipyridamole (100, 1000, and 10,000 μM). Controls consisted of empty defects. Animals were killed 8 weeks postoperatively. Calvariae were analyzed using micro-computed tomography, three-dimensional reconstruction, and nondecalcified histologic sectioning. RESULTS: Scaffold-induced bone growth was statistically greater than bone growth in empty defects (p = 0.02). Large scaffold pores, 500 μm, coated in 1000 μM dipyridamole yielded the most bone growth and lowest degree of scaffold presence within the defect. Histology showed vascularized woven and lamellar bone along with initial formation of vascular canals within the scaffold lattice. Micro-computed tomographic and histologic analysis revealed patent calvarial sutures without evidence of ectopic bone formation across all dipyridamole concentrations. CONCLUSION: The authors present an effective pediatric bone tissue-engineering scaffold design and dipyridamole concentration that is effective in augmentation of calvarial bone generation while preserving cranial suture patency.
AB - BACKGROUND: Three-dimensionally-printed bioceramic scaffolds composed of β-tricalcium phosphate delivering the osteogenic agent dipyridamole can heal critically sized calvarial defects in skeletally mature translational models. However, this construct has yet to be applied to growing craniofacial models. In this study, the authors implanted three-dimensionally-printed bioceramic/dipyridamole scaffolds in a growing calvaria animal model and evaluated bone growth as a function of geometric scaffold design and dipyridamole concentration. Potential adverse effects on the growing suture were also evaluated. METHODS: Bilateral calvarial defects (10 mm) were created in 5-week-old (approximately 1.1 kg) New Zealand White rabbits (n = 16 analyzed). Three-dimensionally-printed bioceramic scaffolds were constructed in quadrant form composed of varying pore dimensions (220, 330, and 500 μm). Each scaffold was coated with collagen and soaked in varying concentrations of dipyridamole (100, 1000, and 10,000 μM). Controls consisted of empty defects. Animals were killed 8 weeks postoperatively. Calvariae were analyzed using micro-computed tomography, three-dimensional reconstruction, and nondecalcified histologic sectioning. RESULTS: Scaffold-induced bone growth was statistically greater than bone growth in empty defects (p = 0.02). Large scaffold pores, 500 μm, coated in 1000 μM dipyridamole yielded the most bone growth and lowest degree of scaffold presence within the defect. Histology showed vascularized woven and lamellar bone along with initial formation of vascular canals within the scaffold lattice. Micro-computed tomographic and histologic analysis revealed patent calvarial sutures without evidence of ectopic bone formation across all dipyridamole concentrations. CONCLUSION: The authors present an effective pediatric bone tissue-engineering scaffold design and dipyridamole concentration that is effective in augmentation of calvarial bone generation while preserving cranial suture patency.
UR - http://www.scopus.com/inward/record.url?scp=85078344935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078344935&partnerID=8YFLogxK
U2 - 10.1097/PRS.0000000000006483
DO - 10.1097/PRS.0000000000006483
M3 - Article
C2 - 31985634
SN - 0032-1052
VL - 145
SP - 337e-347e
JO - Plastic and reconstructive surgery
JF - Plastic and reconstructive surgery
IS - 2
ER -