Abstract
Siamese network-based object tracking has remarkably promoted the automatic capability for highly-maneuvered unmanned aerial vehicles (UAVs). However, the leading-edge tracking framework often depends on template matching, making it trapped when facing multiple views of object in consecutive frames. Moreover, the general image-level pretrained backbone can overfit to holistic representations, causing the misalignment to learn object-level properties in UAV tracking. To tackle these issues, this work presents TRTrack, a comprehensive framework to fully exploit the stereoscopic representation for UAV tracking. Specifically, a novel pre-training paradigm method is proposed. Through trajectory-aware reconstruction training (TRT), the capability of the backbone to extract stereoscopic structure feature is strengthened without any parameter increment. Accordingly, an innovative hierarchical self-attention Transformer is proposed to capture the local detail information and global structure knowledge. For optimizing the correlation map, we proposed a novel spatial correlation refinement (SCR) module, which promotes the capability of modeling the long-range spatial dependencies. Comprehensive experiments on three UAV challenging benchmarks demonstrate that the proposed TRTrack achieves superior UAV tracking performance in both precision and efficiency. Quantitative tests in real-world settings fully prove the effectiveness of our work.
Original language | English (US) |
---|---|
Pages (from-to) | 1133-1140 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 8 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2023 |
Keywords
- Unmanned aerial vehicle
- hierarchical self-attention Transformer
- self-supervised learn- ing
- visual object tracking
- voxel-based trajectory-aware pre-training
ASJC Scopus subject areas
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence