Boundary conditions for the heat equation in a several-dimensional region

G. Gallavotti, H. P. McKean

Research output: Contribution to journalArticlepeer-review

Abstract

The heat equation ∂p/∂t = Δp/2 is to be solved in a severaldimensional region D with ∂p = ∂p + jΔp/2 on the boundary B of D. The elementary solution (Green's function) is interpreted as the transition density of an associated Brownian motion. The latter is built up pathwise from the free Brownian motion by simple geometric and probabilistic transformations.

Original languageEnglish (US)
Pages (from-to)1-14
Number of pages14
JournalNagoya Mathematical Journal
Volume47
DOIs
StatePublished - 1972

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Boundary conditions for the heat equation in a several-dimensional region'. Together they form a unique fingerprint.

Cite this