Abstract
We review boundary rigidity theorems assessing that, under appropriate conditions, riemannian manifolds with the same spectrum of boundary geodesies are isometric. We show how to apply these theorems to the problem of reconstructing a d + 1 dimensional, negative curvature space-time from boundary data associated to two-point functions of high-dimension local operators in a conformal field theory. We also show simple, physically relevant examples of negative-curvature spaces that fail to satisfy in a subtle way some of the assumptions of rigidity theorems. In those examples, we explicitly show that the spectrum of boundary geodesics is not sufficient to reconstruct the metric in the bulk. We also survey other reconstruction procedures and comment on their possible implementation in the context of the holographic AdS/CFT duality.
Original language | English (US) |
---|---|
Pages (from-to) | 899-922 |
Number of pages | 24 |
Journal | Journal of High Energy Physics |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2004 |
Keywords
- AdS-CFT and dS-CFT Correspondence
- Black Holes
ASJC Scopus subject areas
- Nuclear and High Energy Physics