TY - JOUR

T1 - Boundary value problems of the Ginzburg-Landau equations

AU - Yang, Yisong

PY - 1990

Y1 - 1990

N2 - For a domain Ω in the Euclidean space Rd (d = 2, 3) existence of weak solutions for both interior and exterior Dirichlet boundary value problems of the Ginzburg-Landau equations are established without any restriction on the range of the coupling constant λ, the size of Ω, or the boundary data. For the critical choice λ = 1, we prove the existence of confined multivortices in a bounded domain by a constructive monotone iteration method.

AB - For a domain Ω in the Euclidean space Rd (d = 2, 3) existence of weak solutions for both interior and exterior Dirichlet boundary value problems of the Ginzburg-Landau equations are established without any restriction on the range of the coupling constant λ, the size of Ω, or the boundary data. For the critical choice λ = 1, we prove the existence of confined multivortices in a bounded domain by a constructive monotone iteration method.

UR - http://www.scopus.com/inward/record.url?scp=84974270184&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84974270184&partnerID=8YFLogxK

U2 - 10.1017/S0308210500024471

DO - 10.1017/S0308210500024471

M3 - Article

AN - SCOPUS:84974270184

VL - 114

SP - 355

EP - 365

JO - Proceedings of the Royal Society of Edinburgh Section A: Mathematics

JF - Proceedings of the Royal Society of Edinburgh Section A: Mathematics

SN - 0308-2105

IS - 3-4

ER -