Bounded-error quantum state identification and exponential separations in communication complexity

Dmitry Gavinsky, Julia Kempe, Oded Regev, Ronald De Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the problem of bounded-error quantum state identification: given either state α0 or state α1, we are required to output '0', '1' or '?' ("don't know"), such that conditioned on outputting '0' or '1', our guess is correct with high probability. The goal is to maximize the probability of not outputting '?'. We prove a direct product theorem: if we're given two such problems, with optimal probabilities a and b, respectively, and the states in the first problem are pure, then the optimal probability for the joint bounded-error state identification problem is O(ab). Our proof is based on semidefinite programming duality and may be of wider interest. Using this result, we present two exponential separations in the simultaneous message passing model of communication complexity. First, we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared randomness, but needs Ω(n1/3) communication if the parties don't share randomness, even if communication is quantum. This shows the optimality of Yao's recent exponential simulation of shared-randomness protocols by quantum protocols without shared randomness. Second, we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared entanglement, but needs Ω((n/log n)1/3) communication if the parties share randomness but no entanglement, even if communication is quantum. This is the first example in communication complexity where entanglement buys you much more than quantum communication does.

Original languageEnglish (US)
Title of host publicationSTOC'06
Subtitle of host publicationProceedings of the 38th Annual ACM Symposium on Theory of Computing
PublisherAssociation for Computing Machinery
Pages594-603
Number of pages10
ISBN (Print)1595931341, 9781595931344
DOIs
StatePublished - 2006
Event38th Annual ACM Symposium on Theory of Computing, STOC'06 - Seattle, WA, United States
Duration: May 21 2006May 23 2006

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
Volume2006
ISSN (Print)0737-8017

Other

Other38th Annual ACM Symposium on Theory of Computing, STOC'06
Country/TerritoryUnited States
CitySeattle, WA
Period5/21/065/23/06

Keywords

  • Communication complexity
  • Entanglement
  • Quantum computing
  • Randomness
  • State identification

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Bounded-error quantum state identification and exponential separations in communication complexity'. Together they form a unique fingerprint.

Cite this