Caltech Faint Galaxy Redshift Survey. XI. The merger rate to redshift 1 from kinematic pairs

R. G. Carlberg, Judith G. Cohen, D. R. Patton, Roger Blandford, David W. Hogg, H. K.C. Yee, S. L. Morris, H. Lin, Patrick B. Hall, M. Sawicki, Gregory D. Wirth, Lennox L. Cowie, Esther Hu, Antoinette Songaila

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator that is relatively insensitive to population evolution. Here we use a k-corrected and evolution-compensated volume-limited sample having an R-band absolute magnitude of Mk,eR ≤ -19.8 + 5 log h mag drawing about 300 redshifts from the Caltech Faint Galaxy Redshift Survey and 3000 from the Canadian Network for Observational Cosmology field galaxy survey to measure the rate and redshift evolution of merging. The combined sample has an approximately constant comoving number and luminosity density from redshift 0.1 to 1.1 (ΩM = 0.2, ΩΛ = 0.8); hence, any merger evolution will be dominated by correlation and velocity evolution, not density evolution. We identify kinematic pairs with projected separations less than either 50 or 100 h-1 kpc and rest-frame velocity differences of less than 1000 km s-1. The fractional luminosity in pairs is modeled as fL(Δv, rp, Mk,er)(1 + z)mL, where [fL, mL] are [0.14 ± 0.07, 0 ± 1.4] and [0.37 ± 0.7, 0.1 ± 0.5] for rp ≤ 50 and 100 h-1 kpc, respectively (ΩM = 0.2, ΩΛ = 0.8). The value of mL is about 0.6 larger if A = 0. To convert these redshift-space statistics to a merger rate, we use the data to derive a conversion factor to a physical space pair density, a merger probability, and a mean in-spiral time. The resulting mass accretion rate per galaxy (M1, M2 ≥ 0.2M*) is 0.02 ± 0.01(1 + z)0.1±0.5M* Gyr-1. Present-day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift 1. Since merging is likely only weakly dependent on the host mass, the fractional effect, δM/M ≃ 0.15M*/M, is dramatic for lower mass galaxies but is, on the average, effectively perturbative for galaxies above 1M*.

    Original languageEnglish (US)
    Pages (from-to)L1-L4
    JournalAstrophysical Journal
    Volume532
    Issue number1 PART 2
    DOIs
    StatePublished - Mar 20 2000

    Keywords

    • Galaxies: evolution
    • Large-scale structure of universe

    ASJC Scopus subject areas

    • Astronomy and Astrophysics
    • Space and Planetary Science

    Fingerprint

    Dive into the research topics of 'Caltech Faint Galaxy Redshift Survey. XI. The merger rate to redshift 1 from kinematic pairs'. Together they form a unique fingerprint.

    Cite this