Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine

Maria Scherma, Johanna S. Qvist, Arun Asok, Shao Shan C. Huang, Paolo Masia, Matteo Deidda, Ya B. Wei, Rajesh K. Soni, Walter Fratta, Paola Fadda, Eric R. Kandel, Denise B. Kandel, Philippe A. Melas

Research output: Contribution to journalArticlepeer-review


The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain's initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in crosssensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2. Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPKtargets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC-NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.

Original languageEnglish (US)
Pages (from-to)9991-10002
Number of pages12
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number18
StatePublished - May 5 2020


  • Adolescence
  • Cannabis
  • Epigenetics
  • Histone acetylation
  • THC

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine'. Together they form a unique fingerprint.

Cite this