Carbon dioxide hydrate in a microfluidic device: Phase boundary and crystallization kinetics measurements with micro-Raman spectroscopy

Jonathan D. Wells, Weiqi Chen, Ryan L. Hartman, Carolyn A. Koh

Research output: Contribution to journalArticlepeer-review

Abstract

Various emerging carbon capture technologies depend on being able to reliably and consistently grow carbon dioxide hydrate, particularly in packed media. However, there are limited kinetic data for carbon dioxide hydrates at this length scale. In this work, carbon dioxide hydrate propagation rates and conversion were evaluated in a high pressure silicon microfluidic device. The carbon dioxide phase boundary was first measured in the microfluidic device, which showed little deviation from bulk predictions. Additionally, measuring the phase boundary takes on the order of hours compared to weeks or longer for larger scale experimental setups. Next, propagation rates of carbon dioxide hydrate were measured in the channels at low subcoolings (<2 K from phase boundary) and moderate pressures (200-500 psi). Growth was dominated by mass transfer limitations until a critical pressure was reached, and reaction kinetics limited growth upon further increases in pressure. Additionally, hydrate conversion was estimated from Raman spectroscopy in the microfluidics channels. A maximum value of 47% conversion was reached within 1 h of a constant flow experiment, nearly 4% of the time required for similar results in a large scale system. The rapid reaction times and high throughput allowed by high pressure microfluidics provide a new way for carbon dioxide gas hydrate to be characterized.

Original languageEnglish (US)
Article number114710
JournalJournal of Chemical Physics
Volume154
Issue number11
DOIs
StatePublished - Mar 21 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Carbon dioxide hydrate in a microfluidic device: Phase boundary and crystallization kinetics measurements with micro-Raman spectroscopy'. Together they form a unique fingerprint.

Cite this