Case for a 700+GeV WIMP: Cosmic ray spectra from PAMELA, Fermi, and ATIC

Ilias Cholis, Gregory Dobler, Douglas P. Finkbeiner, Lisa Goodenough, Neal Weiner

    Research output: Contribution to journalArticlepeer-review


    Multiple lines of evidence indicate an anomalous injection of high-energy e+e- in the galactic halo. The recent e+ fraction spectrum from the payload for antimatter matter exploration and light-nuclei astrophysics (PAMELA) shows a sharp rise up to 100 GeV. The Fermi gamma-ray space telescope has found a significant hardening of the e+e- cosmic-ray spectrum above 100 GeV, with a break, confirmed by HESS at around 1 TeV. The advanced thin ionization calorimeter (ATIC) has also detected a similar excess, falling back to the expected spectrum at 1 TeV and above. Excess microwaves towards the galactic center in the WMAP data are consistent with hard synchrotron radiation from a population of 10-100 GeV e+e- (the WMAP "Haze"). We argue that dark matter annihilations can provide a consistent explanation of all of these data, focusing on dominantly leptonic modes, either directly or through a new light boson. Normalizing the signal to the highest energy evidence (Fermi and HESS), we find that similar cross sections provide good fits to PAMELA and the Haze, and that both the required cross section and annihilation modes are achievable in models with Sommerfeld-enhanced annihilation. These models naturally predict significant production of gamma rays in the galactic center via a variety of mechanisms. Most notably, there is a robust inverse-Compton scattered (ICS) gamma-ray signal arising from the energetic electrons and positrons, detectable at Fermi/GLAST energies, which should provide smoking gun evidence for this production.

    Original languageEnglish (US)
    Article number123518
    JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
    Issue number12
    StatePublished - Dec 15 2009

    ASJC Scopus subject areas

    • Nuclear and High Energy Physics
    • Physics and Astronomy (miscellaneous)


    Dive into the research topics of 'Case for a 700+GeV WIMP: Cosmic ray spectra from PAMELA, Fermi, and ATIC'. Together they form a unique fingerprint.

    Cite this