Abstract
Asymmetric catalysis plays a crucial role in advancing medicine and materials science. However, the prevailing experiment-driven methods for catalyst evaluation are both resource-heavy and time-consuming. To address this challenge, we present CatScore - a learning-centric metric designed for the automatic evaluation of catalyst design models at both instance and system levels. This approach harnesses the power of deep learning to predict product selectivity as a function of reactants and the proposed catalyst. The predicted selectivity serves as a quantitative score, enabling a swift and precise assessment of a catalyst's activity. On an instance level, CatScore's predictions correlate closely with experimental outcomes, demonstrating a Spearman's ρ = 0.84, which surpasses the density functional theory (DFT) based linear free energy relationships (LFERs) metric with ρ = 0.55 and round-trip accuracy metrics at ρ = 0.24. Importantly, when ranking catalyst candidates, CatScore achieves a mean reciprocal ranking significantly superior to traditional LFER methods, marking a considerable reduction in labor and time investments needed to find top-performing catalysts.
Original language | English (US) |
---|---|
Pages (from-to) | 1624-1637 |
Number of pages | 14 |
Journal | Digital Discovery |
Volume | 3 |
Issue number | 8 |
DOIs | |
State | Published - Jul 11 2024 |
ASJC Scopus subject areas
- Chemistry (miscellaneous)