Causal Structure Learning with Continuous Variables in Continuous Time

Zachary J. Davis, Neil R. Bramley, Bob Rehder

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Interventions, time, and continuous-valued variables are all potentially powerful cues to causation. Furthermore, when observed over time, causal processes can contain feedback and oscillatory dynamics that make inference hard. We present a generative model and framework for causal inference over continuous variables in continuous time based on Ornstein-Uhlenbeck processes. Our generative model produces a stochastic sequence of evolving variable values that manifest many dynamical properties depending on the nature of the causal relationships, and a learner's interventions (manual changes to the values of variables during a trial). Our model is also invertible, allowing us to benchmark participant judgments against an optimal model. We find that when interacting with systems acting according to this formalism people directly compare relationships between individual variable pairs rather than considering the full space of possible models, in accordance with a local computations model of causal learning (e.g., Fernbach & Sloman, 2009). The formalism presented here provides researchers in causal cognition with a powerful framework for studying dynamic systems and presents opportunities for other areas in cognitive psychology such as control problems.

Original languageEnglish (US)
Title of host publicationProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
PublisherThe Cognitive Science Society
Pages287-292
Number of pages6
ISBN (Electronic)9780991196784
StatePublished - 2018
Event40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018 - Madison, United States
Duration: Jul 25 2018Jul 28 2018

Publication series

NameProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018

Conference

Conference40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Country/TerritoryUnited States
CityMadison
Period7/25/187/28/18

Keywords

  • causal learning
  • continuous time
  • continuous variables
  • intervention

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Causal Structure Learning with Continuous Variables in Continuous Time'. Together they form a unique fingerprint.

Cite this