CCK+ Interneurons Contribute to Thalamus-Evoked Feed-Forward Inhibition in the Prelimbic Prefrontal Cortex

Aichurok Kamalova, Kasra Manoocheri, Xingchen Liu, Sanne M. Casello, Matthew Huang, Corey Baimel, Emily V. Jang, Paul G. Anastasiades, David P. Collins, Adam G. Carter

Research output: Contribution to journalArticlepeer-review

Abstract

Interneurons in the medial prefrontal cortex (PFC) regulate local neural activity to influence cognitive, motivated, and emotional behaviors. Parvalbumin-expressing (PV+) interneurons are the primary mediators of thalamus-evoked feed-forward inhibition across the mouse cortex, including the anterior cingulate cortex, where they are engaged by inputs from the mediodorsal (MD) thalamus. In contrast, in the adjacent prelimbic (PL) cortex, we find that PV+ interneurons are scarce in the principal thalamorecipient layer 3 (L3), suggesting distinct mechanisms of inhibition. To identify the interneurons that mediate MD-evoked inhibition in PL, we combine slice physiology, optogenetics, and intersectional genetic tools in mice of both sexes. We find interneurons expressing cholecystokinin (CCK+) are abundant in L3 of PL, with cells exhibiting fast-spiking (fs) or non–fast-spiking (nfs) properties. MD inputs make stronger connections onto fs-CCK+ interneurons, driving them to fire more readily than nearby L3 pyramidal cells and other interneurons. CCK+ interneurons in turn make inhibitory, perisomatic connections onto L3 pyramidal cells, where they exhibit cannabinoid 1 receptor (CB1R) mediated modulation. Moreover, MD-evoked feed-forward inhibition, but not direct excitation, is also sensitive to CB1R modulation. Our findings indicate that CCK+ interneurons contribute to MD-evoked inhibition in PL, revealing a mechanism by which cannabinoids can modulate MD-PFC communication.

Original languageEnglish (US)
Article numbere0957232024
JournalJournal of Neuroscience
Volume44
Issue number23
DOIs
StatePublished - Jun 5 2024

Keywords

  • CCK+ interneurons
  • cannabinoids
  • inhibition
  • prefrontal cortex
  • thalamus

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'CCK+ Interneurons Contribute to Thalamus-Evoked Feed-Forward Inhibition in the Prelimbic Prefrontal Cortex'. Together they form a unique fingerprint.

Cite this