Cell surface modifications in the epithelium of rat ventral prostate during adaptation to in vitro conditions: An ultrastructural study

Frederick B. Merk, Paul W.L. Kwan, Stanley Spilman, Louis Terracio, William H.J. Douglas

Research output: Contribution to journalArticlepeer-review


Sequential changes in epithelial cells of collagenase-dissociated rat ventral prostate were studied by thin-section and freeze-fracture electron microscopy. Epithelial cells did not attach to the substrate for 48 h. Pelleted cells obtained 1, 24, and 48 h after dissociation were assigned to three categories depending on morphology and cellular associations. (a) Solitary epithelial cells degenerated as determined by extensive vacuolization in the cytoplasm and aggregation of intramembranous particles (IMP). (b) Epithelial clusters consisted of a homogeneous population of well-maintained, closely packed cells. Aggregation of IMP was minimal. Tight junctions that formed between cells at the periphery of the clusters appeared normal and provided an effective permeability barrier demonstrated by the exclusion of ruthenium red tracer. (c) Tissue fragments were comprised of varying combinations of epithelial, endothelial, and smooth muscle cells as well as fibroblasts and erythrocytes. Maintenance of tissue fragments was variable. Plasma membranes often displayed aggregated IMP and proliferated tight junctional strands. An effective permeability barrier was absent. After the 48 h "latent period", epithelial cells in the clusters lost interdependence, disassociated from one another, and attached to the substrate. These isolated cells, which did not display aggregated IMP, retained the ability to form an effective permeability barrier upon reaching confluency. During the first 48 h, epithelial cells did not tolerate solitary existence, yet as participants in clusters they were well maintained. After this interval, they no longer required interactions with neighbors in order to survive. These results indicate that under our experimental conditions, an adaptation period is required by prostatic epithelial cells. The enhanced quality of maintenance associated with epithelial clusters suggests that control over the internal microenvironment, provided by a tight junctional barrier, may be important during the initial period of adaptation in vitro.

Original languageEnglish (US)
Pages (from-to)216-228
Number of pages13
JournalIn Vitro
Issue number3
StatePublished - Mar 1984


  • adaptation
  • cell injury
  • cultured rat ventral prostate
  • freeze-fracture
  • tight junction
  • ultrastructure

ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology


Dive into the research topics of 'Cell surface modifications in the epithelium of rat ventral prostate during adaptation to in vitro conditions: An ultrastructural study'. Together they form a unique fingerprint.

Cite this