TY - GEN
T1 - Character-Aware neural language models
AU - Kim, Yoon
AU - Jernite, Yacine
AU - Sontag, David
AU - Rush, Alexander M.
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-Term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-The-Art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.
AB - We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-Term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-The-Art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.
UR - http://www.scopus.com/inward/record.url?scp=84996482260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84996482260&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84996482260
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 2741
EP - 2749
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -