Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energyγ-rays

V. Álvarez, F. I.G.M. Borges, S. Cárcel, J. Castel, S. Cebrián, A. Cervera, C. A.N. Conde, T. Dafni, T. H.V.T. Dias, J. Díaz, M. Egorov, R. Esteve, P. Evtoukhovitch, L. M.P. Fernandes, P. Ferrario, A. L. Ferreira, E. D.C. Freitas, V. M. Gehman, A. Gil, A. GoldschmidtH. Gómez, J. J. Gómez-Cadenas, D. González-Díaz, R. M. Gutiérrez, J. Hauptman, J. A.Hernando Morata, D. C. Herrera, F. J. Iguaz, I. G. Irastorza, M. A. Jinete, L. Labarga, A. Laing, I. Liubarsky, J. A.M. Lopes, D. Lorca, M. Losada, G. Luzón, A. Marí, J. Martín-Albo, A. Martínez, G. Martínez-Lema, T. Miller, A. Moiseenko, F. Monrabal, C. M.B. Monteiro, F. J. Mora, L. M. Moutinho, J. Muñoz Vidal, H. Natal Da Luz, G. Navarro, M. Nebot-Guinot, D. Nygren, C. A.B. Oliveira, R. Palma, J. Pérez, J. L.Pérez Aparicio, J. Renner, L. Ripoll, A. Rodríguez, J. Rodríguez, F. P. Santos, J. M.F.Dos Santos, L. Segui, L. Serra, D. Shuman, A. Simón, C. Sofka, M. Sorel, J. F. Toledo, A. Tomás, J. Torrent, Z. Tsamalaidze, D. Vázquez, J. F.C.A. Veloso, J. A. Villar, R. C. Webb, N. Yahlali, F. Aznar, D. Calvet, F. Druillole, E. Ferrer-Ribas, J. A. García, I. Giomataris, J. Gracia, A. Le Coguie, J. P. Mols, P. Pons, E. Ruiz

Research output: Contribution to journalArticlepeer-review

Abstract

NEXT-MM is a general-purpose high pressure (10 bar, ∼ 25 l active volume) Xenon-based TPC, read out in charge mode with an 0.8 cm × 0.8 cm-segmented 700 cm2 plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT 0νββ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy γ-rays emitted by a 241Am source when interacting with the Xenon gas (Eγ = 26, 30, 59.5 keV). The localized nature of such events around atmospheric pressure, the long drift times, as well as the possibility to determine their production time from the associated α particle in coincidence, allow the extraction of primordial properties of the TPC filling gas, namely the drift velocity, diffusion and attachment coefficients. In this work we focus on the little explored combination of Xe and trimethylamine (TMA) for which, in particular, such properties are largely unknown. This gas mixture offers potential advantages over pure Xenon when aimed at Rare Event Searches, mainly due to its Penning characteristics, wave-length shifting properties and reduced diffusion, and it is being actively investigated by our collaboration. The chamber is currently operated at 2.7 bar, as an intermediate step towards the envisaged 10 bar. We report here its performance as well as a first implementation of the calibration procedures that have allowed the extension of the previously reported energy resolution to the whole readout plane (10.6% FWHM@30 keV).

Original languageEnglish (US)
Article numberC04015
JournalJournal of Instrumentation
Volume9
Issue number4
DOIs
StatePublished - Apr 2014

Keywords

  • Charge transport and multiplication in gas
  • Double-beta decay detectors
  • Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc)
  • Time projection Chambers (TPC)

ASJC Scopus subject areas

  • Mathematical Physics
  • Instrumentation

Fingerprint Dive into the research topics of 'Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energyγ-rays'. Together they form a unique fingerprint.

Cite this