Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions

Hervé Nguendon Kenhagho, Sergey Shevchik, Fatemeh Saeidi, Neige Faivre, Bastian Meylan, Georg Rauter, Raphael Guzman, Philippe Cattin, Kilian Wasmer, Azhar Zam

Research output: Contribution to journalArticlepeer-review


Smart laser technologies are desired that can accurately cut and characterize tissues, such as bone and muscle, with minimal thermal damage and fast healing. Using a long-pulsed laser with a 0.5-10 ms pulse width at a wavelength of 1.07μm, we investigated the optimum laser parameters for producing craters with minimal thermal damage under both wet and dry conditions. In different tissues (bone and muscle), we analyzed craters of various morphologies, depths, and volumes. We used a two-way Analysis of Variance (ANOVA) test to investigate whether there are significant differences in the ablation effciency in wet versus dry conditions at each level of the pulse energy. We found that bone and muscle tissue ablated under wet conditions produced fewer cracks and less thermal damage around the craters than under dry conditions. In contrast to muscle, the ablation effciency of bone under wet conditions was not higher than under dry conditions. Tissue differentiation was carried out based on measured acoustic waves. A Principal Component Analysis of the measured acoustic waves and Mahalanobis distances were used to differentiate bone and muscle under wet conditions. Bone and muscle ablated in wet conditions demonstrated a classification error of less than 6.66% and 3.33%, when measured by a microphone and a fiber Bragg grating, respectively.

Original languageEnglish (US)
Article number1338
Issue number8
StatePublished - 2019


  • Acoustic tissue response
  • Influence of ablation condition
  • Laser ablation
  • Tissue differentiation

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions'. Together they form a unique fingerprint.

Cite this