Characterizing the effective bandwidth of tri-stable energy harvesters

Meghashyam Panyam, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper aims to investigate the response and characterize the effective frequency bandwidth of tri-stable vibratory energy harvesters. To achieve this goal, the method of multiple scales is utilized to construct analytical solutions describing the amplitude and stability of the intra-and inter-well dynamics of the harvester. Using these solutions, critical bifurcations in the parameter's space are identified and used to define an effective frequency bandwidth of the harvester. A piezoelectric tri-stable energy harvester consisting of a uni-morph cantilever beam is considered. Stiffness nonlinearities are introduced into the harvesters design by applying a static magnetic field near the tip of the beam. Experimental studies performed on the harvester are presented to validate some of the theoretical findings.

Original languageEnglish (US)
Title of host publication12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850183
DOIs
StatePublished - 2016
EventASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 - Charlotte, United States
Duration: Aug 21 2016Aug 24 2016

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Other

OtherASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
Country/TerritoryUnited States
CityCharlotte
Period8/21/168/24/16

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Characterizing the effective bandwidth of tri-stable energy harvesters'. Together they form a unique fingerprint.

Cite this