Abstract
Serotonin (5-HT) can induce a release of intraglial S-100B and produce a change in glial morphology. Because S-100B can inhibit polymerization of glial fibrillary acidic protein (GFAP), we hypothesize that glial reactivity may reflect the loss of intraglial S-100B. Adult male transgenic S-100B homozygous knockout (-/-) mice (KO) and wild-type CD-1 (WT) mice were studied. S-100B-immunoreactivity (IR) was seen in the brain tissue of WT (CD-1) but not S-100B KO (-/-) mice. GFAP-IR was seen in both WT (CD-1) and S-100B KO (-/-) glia cells, but S-100B KO (-/-) GFAP-IR cells appeared larger, darker, and more branched than in WT (CD-1). To compare the response of GFAP-IR cells to 5-HT in S-100B KO (-/-) and WT (CD-1) mice, we injected animals with para-chloroamphetamine (PCA) over 2 days (5 and 10 mg/ml). PCA is a potent 5-HT releaser which can induce gliosis in the rodent brain. In WT (CD-1) mice, the size, branching, and density of GFAP-IR cells were significantly increased after PCA injections. No increase in GFAP-IR activation was seen in the S-100B KO (-/-) after PCA injections. Cell-specific densitometry (set at a threshold of 0-150 based on a scale of 255) in these animals statistically showed an increase in GFAP-IR after PCA injections in WT (CD-1) but not S-100B KO (-/-) mice. These results are consistent with the hypothesis that 5-HT may modulate glial morphology by inducing a release of intracellular S-100B, and this pathway is inoperable in the S-100B KO (-/-).
Original language | English (US) |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Brain Research |
Volume | 1031 |
Issue number | 1 |
DOIs | |
State | Published - Jan 7 2005 |
Keywords
- Astrocyte
- Hippocampus
- Serotonin
ASJC Scopus subject areas
- General Neuroscience
- Molecular Biology
- Clinical Neurology
- Developmental Biology