Circa: Stochastic ReLUs for Private Deep Learning

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, Siddharth Garg

Research output: Chapter in Book/Report/Conference proceedingConference contribution


The simultaneous rise of machine learning as a service and concerns over user privacy have increasingly motivated the need for private inference (PI). While recent work demonstrates PI is possible using cryptographic primitives, the computational overheads render it impractical. State-of-art deep networks are inadequate in this context because the source of slowdown in PI stems from the ReLU operations whereas optimizations for plaintext inference focus on reducing FLOPs. In this paper we re-think ReLU computations and propose optimizations for PI tailored to properties of neural networks. Specifically, we reformulate ReLU as an approximate sign test and introduce a novel truncation method for the sign test that significantly reduces the cost per ReLU. These optimizations result in a specific type of stochastic ReLU. The key observation is that the stochastic fault behavior is well suited for the fault-tolerant properties of neural network inference. Thus, we provide significant savings without impacting accuracy. We collectively call the optimizations Circa and demonstrate improvements of up to 4.7× storage and 3× runtime over baseline implementations; we further show that Circa can be used on top of recent PI optimizations to obtain 1.8× additional speedup.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258


Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Circa: Stochastic ReLUs for Private Deep Learning'. Together they form a unique fingerprint.

Cite this