### Abstract

Using the spectral theory of unitary operators and the theory of orthogonal polynomials on the unit circle, we propose a simple matrix model for the following circular analog of the Jacobi ensemble: (Image Omitted) with ℛeδ > -1/2. If e is a cyclic vector for a unitary n × n matrix U, the spectral measure of the pair (U, e) is well parameterized by its Verblunsky coefficients (α_{0}, ..., α_{n-1}). We introduce here a deformation (γ_{0}, ..., γ_{n-1}) of these coefficients so that the associated Hessenberg matrix (called GGT) can be decomposed into a product r(γ0)⋯ r(γ_{n-1}) of elementary reflections parameterized by these coefficients. If γ0, ..., γ_{n-1} are independent random variables with some remarkable distributions, then the eigenvalues of the GGT matrix follow the circular Jacobi distribution above.These deformed Verblunsky coefficients also allow us to prove that, in the regime δ = δ(n) with δ(n)/n → βd2, the spectral measure and the empirical spectral distribution weakly converge to an explicit nontrivial probability measure supported by an arc of the unit circle. We also prove the large deviations for the empirical spectral distribution.

Original language | English (US) |
---|---|

Pages (from-to) | 4357-4394 |

Number of pages | 38 |

Journal | International Mathematics Research Notices |

Issue number | 23 |

DOIs | |

State | Published - 2009 |

### ASJC Scopus subject areas

- Mathematics(all)

## Fingerprint Dive into the research topics of 'Circular jacobi ensembles and deformed verblunsky coefficients'. Together they form a unique fingerprint.

## Cite this

*International Mathematics Research Notices*, (23), 4357-4394. https://doi.org/10.1093/imrn/rnp092