TY - JOUR

T1 - Classical duals of derivatively self-coupled theories

AU - Gabadadze, Gregory

AU - Hinterbichler, Kurt

AU - Pirtskhalava, David

PY - 2012/6/7

Y1 - 2012/6/7

N2 - Solutions to scalar theories with derivative self-couplings often have regions where nonlinearities are important. Given a classical source, there is usually a region, demarcated by the Vainshtein radius, inside of which the classical nonlinearities are dominant, while quantum effects are still negligible. If perturbation theory is used to find such solutions, the expansion generally breaks down as the Vainshtein radius is approached from the outside. Here we show that it is possible, by integrating in certain auxiliary fields, to reformulate these theories in such a way that nonlinearities become small inside the Vainshtein radius, and large outside it. This provides a complementary, or classically dual, description of the same theory-one in which nonperturbative regions become accessible perturbatively. We consider a few examples of classical solutions with various symmetries, and find that in all the cases the dual formulation makes it rather simple to study regimes in which the original perturbation theory fails to work. As an illustration, we reproduce by perturbative calculations some of the already known nonperturbative results, for a pointlike source, cosmic string, and domain wall, and derive a new one. The dual formulation may be useful for developing the parametrized post Newtonian formalism in the theories of modified gravity that give rise to such scalar theories.

AB - Solutions to scalar theories with derivative self-couplings often have regions where nonlinearities are important. Given a classical source, there is usually a region, demarcated by the Vainshtein radius, inside of which the classical nonlinearities are dominant, while quantum effects are still negligible. If perturbation theory is used to find such solutions, the expansion generally breaks down as the Vainshtein radius is approached from the outside. Here we show that it is possible, by integrating in certain auxiliary fields, to reformulate these theories in such a way that nonlinearities become small inside the Vainshtein radius, and large outside it. This provides a complementary, or classically dual, description of the same theory-one in which nonperturbative regions become accessible perturbatively. We consider a few examples of classical solutions with various symmetries, and find that in all the cases the dual formulation makes it rather simple to study regimes in which the original perturbation theory fails to work. As an illustration, we reproduce by perturbative calculations some of the already known nonperturbative results, for a pointlike source, cosmic string, and domain wall, and derive a new one. The dual formulation may be useful for developing the parametrized post Newtonian formalism in the theories of modified gravity that give rise to such scalar theories.

UR - http://www.scopus.com/inward/record.url?scp=84862270996&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862270996&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.85.125007

DO - 10.1103/PhysRevD.85.125007

M3 - Article

AN - SCOPUS:84862270996

VL - 85

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 12

M1 - 125007

ER -