Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm

Md Akter Hussain, Alauddin Bhuiyan, Chi D. Luu, R. Theodore Smith, Robyn H. Guymer, Hiroshi Ishikawa, Joel S. Schuman, Kotagiri Ramamohanarao

Research output: Contribution to journalArticlepeer-review


In this paper, we propose a novel classification model for automatically identifying individuals with age-related macular degeneration (AMD) or Diabetic Macular Edema (DME) using retinal features from Spectral Domain Optical Coherence Tomography (SD-OCT) images. Our classification method uses retinal features such as the thickness of the retina and the thickness of the individual retinal layers, and the volume of the pathologies such as drusen and hyper-reflective intra-retinal spots. We extract automatically, ten clinically important retinal features by segmenting individual SD-OCT images for classification purposes. The effectiveness of the extracted features is evaluated using several classification methods such as Random Forrest on 251 (59 normal, 177 AMD and 15 DME) subjects. We have performed 15-fold cross-validation tests for three phenotypes; DME, AMD and normal cases using these data sets and achieved accuracy of more than 95% on each data set with the classification method using Random Forrest. When we trained the system as a two-class problem of normal and eye with pathology, using the Random Forrest classifier, we obtained an accuracy of more than 96%. The area under the receiver operating characteristic curve (AUC) finds a value of 0.99 for each dataset. We have also shown the performance of four state-of-the-methods for classification the eye participants and found that our proposed method showed the best accuracy.

Original languageEnglish (US)
Article numbere0198281
JournalPloS one
Issue number6
StatePublished - Jun 2018

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm'. Together they form a unique fingerprint.

Cite this