TY - JOUR
T1 - Classifying Continuous Glucose Monitoring Documents From Electronic Health Records
AU - Zheng, Yaguang
AU - Iturrate, Eduardo
AU - Li, Lehan
AU - Wu, Bei
AU - Small, William R.
AU - Zweig, Susan
AU - Fletcher, Jason
AU - Chen, Zhihao
AU - Johnson, Stephen B.
N1 - Publisher Copyright:
© 2025 Diabetes Technology Society.
PY - 2025
Y1 - 2025
N2 - Background: Clinical use of continuous glucose monitoring (CGM) is increasing storage of CGM-related documents in electronic health records (EHR); however, the standardization of CGM storage is lacking. We aimed to evaluate the sensitivity and specificity of CGM Ambulatory Glucose Profile (AGP) classification criteria. Methods: We randomly chose 2244 (18.1%) documents from NYU Langone Health. Our document classification algorithm: (1) separated multiple-page documents into a single-page image; (2) rotated all pages into an upright orientation; (3) determined types of devices using optical character recognition; and (4) tested for the presence of particular keywords in the text. Two experts in using CGM for research and clinical practice conducted an independent manual review of 62 (2.8%) reports. We calculated sensitivity (correct classification of CGM AGP report) and specificity (correct classification of non-CGM report) by comparing the classification algorithm against manual review. Results: Among 2244 documents, 1040 (46.5%) were classified as CGM AGP reports (43.3% FreeStyle Libre and 56.7% Dexcom), 1170 (52.1%) non-CGM reports (eg, progress notes, CGM request forms, or physician letters), and 34 (1.5%) uncertain documents. The agreement for the evaluation of the documents between the two experts was 100% for sensitivity and 98.4% for specificity. When comparing the classification result between the algorithm and manual review, the sensitivity and specificity were 95.0% and 91.7%. Conclusion: Nearly half of CGM-related documents were AGP reports, which are useful for clinical practice and diabetes research; however, the remaining half are other clinical documents. Future work needs to standardize the storage of CGM-related documents in the EHR.
AB - Background: Clinical use of continuous glucose monitoring (CGM) is increasing storage of CGM-related documents in electronic health records (EHR); however, the standardization of CGM storage is lacking. We aimed to evaluate the sensitivity and specificity of CGM Ambulatory Glucose Profile (AGP) classification criteria. Methods: We randomly chose 2244 (18.1%) documents from NYU Langone Health. Our document classification algorithm: (1) separated multiple-page documents into a single-page image; (2) rotated all pages into an upright orientation; (3) determined types of devices using optical character recognition; and (4) tested for the presence of particular keywords in the text. Two experts in using CGM for research and clinical practice conducted an independent manual review of 62 (2.8%) reports. We calculated sensitivity (correct classification of CGM AGP report) and specificity (correct classification of non-CGM report) by comparing the classification algorithm against manual review. Results: Among 2244 documents, 1040 (46.5%) were classified as CGM AGP reports (43.3% FreeStyle Libre and 56.7% Dexcom), 1170 (52.1%) non-CGM reports (eg, progress notes, CGM request forms, or physician letters), and 34 (1.5%) uncertain documents. The agreement for the evaluation of the documents between the two experts was 100% for sensitivity and 98.4% for specificity. When comparing the classification result between the algorithm and manual review, the sensitivity and specificity were 95.0% and 91.7%. Conclusion: Nearly half of CGM-related documents were AGP reports, which are useful for clinical practice and diabetes research; however, the remaining half are other clinical documents. Future work needs to standardize the storage of CGM-related documents in the EHR.
KW - continuous glucose monitoring
KW - diabetes mellitus
KW - electronic health record
KW - natural language processing
UR - http://www.scopus.com/inward/record.url?scp=105000152370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000152370&partnerID=8YFLogxK
U2 - 10.1177/19322968251324535
DO - 10.1177/19322968251324535
M3 - Article
AN - SCOPUS:105000152370
SN - 1932-2968
JO - Journal of diabetes science and technology
JF - Journal of diabetes science and technology
ER -