TY - GEN
T1 - COEUS
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
AU - Liakos, Panagiotis
AU - Ntoulas, Alexandros
AU - Delis, Alex
N1 - Funding Information:
This work has been partially supported by the University of Athens Special Account of Research Grants № 13233. ‡This work was done before author joined LinkedIn.
Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - We examine the problem of effective identification of community structure of a network whose elements and their respective relationships manifest through streams. The problem has recently garnered much interest as it appears in emerging computational environments and concerns critical applications in diverse areas including social computing, web analysis, IoT and biology. Despite the already expended research efforts in detecting communities in networks, the unprecedented volume that real-world networks now reach, renders the task of revealing community structures extremely burdensome. The sheer size of such networks oftentimes makes their representation in main memory impossible. Thus, processing the developing graphs to extract the underlying communities remains an open challenge. In this paper, we propose a graph-stream community detection algorithm that expands seed-sets of nodes to communities. We consider a stream of edges and aim at processing them to form communities without maintaining the entire graph structure. Instead, we maintain very limited information regarding the nodes of the graph and the communities we seek. In addition to our novel streaming approach, we both develop a technique that increases the accuracy of our algorithm considerably and propose a new clustering algorithm that allows for automatically deriving the size of the communities we seek to detect. Our experimental evaluation using ground-truth communities for a wide range of large real-word networks shows that our proposed approach does achieve accuracy comparable or even better to that of state-of-the-art non-streaming community detection algorithms. More importantly, the attained improvements in both execution time and memory space requirements are remarkable.
AB - We examine the problem of effective identification of community structure of a network whose elements and their respective relationships manifest through streams. The problem has recently garnered much interest as it appears in emerging computational environments and concerns critical applications in diverse areas including social computing, web analysis, IoT and biology. Despite the already expended research efforts in detecting communities in networks, the unprecedented volume that real-world networks now reach, renders the task of revealing community structures extremely burdensome. The sheer size of such networks oftentimes makes their representation in main memory impossible. Thus, processing the developing graphs to extract the underlying communities remains an open challenge. In this paper, we propose a graph-stream community detection algorithm that expands seed-sets of nodes to communities. We consider a stream of edges and aim at processing them to form communities without maintaining the entire graph structure. Instead, we maintain very limited information regarding the nodes of the graph and the communities we seek. In addition to our novel streaming approach, we both develop a technique that increases the accuracy of our algorithm considerably and propose a new clustering algorithm that allows for automatically deriving the size of the communities we seek to detect. Our experimental evaluation using ground-truth communities for a wide range of large real-word networks shows that our proposed approach does achieve accuracy comparable or even better to that of state-of-the-art non-streaming community detection algorithms. More importantly, the attained improvements in both execution time and memory space requirements are remarkable.
UR - http://www.scopus.com/inward/record.url?scp=85047838779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047838779&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8257983
DO - 10.1109/BigData.2017.8257983
M3 - Conference contribution
AN - SCOPUS:85047838779
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 676
EP - 685
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 11 December 2017 through 14 December 2017
ER -