Collimating the growth of twisted crystals of achiral compounds

Idalys Lozano, St John Whittaker, Yongfan Yang, Akash Tiwari, Hengyu Zhou, Shin Kim, Magaly Mendoza, Maryam Sow, Alexander G. Shtukenberg, Bart Kahr, Zhihua An, Stephanie S. Lee

Research output: Contribution to journalArticlepeer-review

Abstract

A great proportion of molecular crystals can be made to grow as twisted fibrils. Typically, this requires high crystallization driving forces that lead to spherulitic textures. Here, it is shown how micron size channels fabricated from poly(dimethylsiloxane) (PDMS) serve to collimate the circular polycrystalline growth fronts of optically banded spherulites of twisted crystals of three compounds, coumarin, 2,5-bis(3-dodecyl-2-thienyl)-thiazolo[5,4-d]thiazole, and tetrathiafulvalene. The relationships between helicoidal pitch, growth front coherence, and channel width are measured. As channels spill into open spaces, collimated crystals “diffract” via small angle branching. On the other hand, crystals grown together from separate channels whose bands are out of phase ultimately become a single in-phase bundle of fibrils by a cooperative mechanism yet unknown. The isolation of a single twist sense in individual channels is described. We forecast that such chiral molecular crystalline channels may function as chiral optical wave guides.

Original languageEnglish (US)
Pages (from-to)418-426
Number of pages9
JournalChirality
Volume35
Issue number7
DOIs
StatePublished - Jul 2023

Keywords

  • PDMS microfabrication
  • chiroptoelectronics
  • circular birefringence
  • crystal growth
  • helix sense
  • twisted crystal
  • waveguide

ASJC Scopus subject areas

  • Drug Discovery
  • Analytical Chemistry
  • Spectroscopy
  • Catalysis
  • Pharmacology
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Collimating the growth of twisted crystals of achiral compounds'. Together they form a unique fingerprint.

Cite this