Commensurate states in disordered networks

M. A. Itzler, A. M. Behrooz, C. W. Wilks, R. Bojko, P. M. Chaikin

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We have measured the phase boundary Tc(H) for a series of superconducting wire networks with different types and degrees of disorder. The basic pattern to be perturbed was the square net. In the first series lines were randomly displaced from their periodic positions (preserving the long-range order), and in the second series their spacing was randomly varied about an average (destroying the long-range periodic order). These studies on these systems are similar to studies on Josephson-junction arrays with correlated random areas. In the last series the two-dimensional periodicity was destroyed by randomly displacing successive rows of squares while leaving the areas unchanged; the result is a network with quasi-one-dimensional periodic order. The effects of the areal disorder are dramatic and lead to the decay of structure on the phase boundary regardless of whether or not long-range order has been destroyed. The destruction of long-range order in one direction, however, leaves the phase boundary virtually unchanged. The data are compared with previous theoretical treatments and are analyzed using the J2 model, in which one considers only the kinetic energy of the induced currents resulting from fluxoid quantization. This model explains most of the features of the experimental data and yields quantitative predictions for some.

    Original languageEnglish (US)
    Pages (from-to)8319-8331
    Number of pages13
    JournalPhysical Review B
    Volume42
    Issue number13
    DOIs
    StatePublished - 1990

    ASJC Scopus subject areas

    • Condensed Matter Physics

    Fingerprint Dive into the research topics of 'Commensurate states in disordered networks'. Together they form a unique fingerprint.

    Cite this