Compact and Optimal Deep Learning with Recurrent Parameter Generators

Jiayun Wang, Yubei Chen, Stella X. Yu, Brian Cheung, Yann Lecun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep learning has achieved tremendous success by training increasingly large models, which are then compressed for practical deployment. We propose a drastically different approach to compact and optimal deep learning: We decouple the Degrees of freedom (DoF) and the actual number of parameters of a model, optimize a small DoF with predefined random linear constraints for a large model of an arbitrary architecture, in one-stage end-to-end learning.Specifically, we create a recurrent parameter generator (RPG), which repeatedly fetches parameters from a ring and unpacks them onto a large model with random permutation and sign flipping to promote parameter decorrelation. We show that gradient descent can automatically find the best model under constraints with in fact faster convergence.Our extensive experimentation reveals a log-linear relationship between model DoF and accuracy. Our RPG demonstrates remarkable DoF reduction, and can be further pruned and quantized for additional run-time performance gain. For example, in terms of top-1 accuracy on ImageNet, RPG achieves 96% of ResNet18's performance with only 18% DoF (the equivalent of one convolutional layer) and 52% of ResNet34's performance with only 0.25% DoF! Our work shows significant potential of constrained neural opti-mization in compact and optimal deep learning.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3889-3899
Number of pages11
ISBN (Electronic)9781665493468
DOIs
StatePublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: Jan 3 2023Jan 7 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period1/3/231/7/23

Keywords

  • Algorithms: Machine learning architectures
  • and algorithms (including transfer)
  • formulations

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Compact and Optimal Deep Learning with Recurrent Parameter Generators'. Together they form a unique fingerprint.

Cite this