Comparing Machine and Human Learning in a Planning Task of Intermediate Complexity

Zheyang Zheng, Xinlei Lin, Jake Topping, Wei Ji Ma

Research output: Contribution to conferencePaperpeer-review

Abstract

Deep reinforcement learning agents such as AlphaZero have achieved superhuman strength in complex combinatorial games. By contrast, the cognitive science of planning has mostly focused on simple tasks for experimental and computational tractability. Using a board game that strikes a balance between complexity and tractability, we find that AlphaZero agents improve in value function quality and planning depth through learning, similar to human in previous modeling work. In addition, these metrics reflect causal contributions to AlphaZero's playing strength. Yet the strongest contributor is the policy quality. The decrease in policy entropy also drives the increase in planning depth. The contribution of planning depth to performance is lessened in late training. These results contribute to a joint understanding of machine and human planning, providing an interpretable way of understanding the learning and strength of AlphaZero, while generating novel hypothesis on human planning.

Original languageEnglish (US)
Pages3601-3607
Number of pages7
StatePublished - 2022
Event44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 - Toronto, Canada
Duration: Jul 27 2022Jul 30 2022

Conference

Conference44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022
Country/TerritoryCanada
CityToronto
Period7/27/227/30/22

Keywords

  • Human-DNN comparison
  • Interpretable Machine Learning
  • Learning
  • Planning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Comparing Machine and Human Learning in a Planning Task of Intermediate Complexity'. Together they form a unique fingerprint.

Cite this